top of page

Решать логические задачи очень увлекательно. В них вроде бы нет никакой математики – нет ни чисел, ни функций, ни треугольников, ни векторов, а есть только лжецы и мудрецы, истина и ложь.

Известно несколько различных способов решения логических задач:

- Метод рассуждений

- метод таблиц

- Метод графов

- Метод блок-схем

-Метод кругов Эйлера.

-Истинностные задачи

-Задачи, решаемые с конца

Остановимся отдельно на каждом из методов, иллюстрируя их примерами решения конкретных задач. Желательно отрабатывать решение каждого вида задач постепенно, поэтапно.

Итак, мы узнаем, как разными способами можно решать логические задачи. Познакомившись подробно, разберёмся в каких случаях удобнее использовать тот или другой метод.

Метод 1. Метод рассуждений

В методе рассуждений при решении помогают: схемы, чертежи, краткие записи, умение выбирать информацию, умение пользоваться правилом перебора.

Этим способом обычно решают несложные логические задачи.

 

Задача. В велогонке Дима, Саша, Андрей и Вася заняли со второго по пятое места. Саша обогнал Диму на 39 с, но отстал от Васи на 41 с. Андрей был впереди Васи на 12 с, но отстал от победителя на 13 с. В каком порядке финишировали мальчики и с каким отставанием от победителя?.

Решение: Проиллюстрируем условие задачи с помощью рисунка. В соревнованиях участвовали Дима, Саша, Андрей и Вася. Кроме них в задачи говорилось о «победителе». Отметим точками каждого из участников:

 

Д С П

 

В А

Если один из участников отстал от другого, будем на рисунке ставить стрелку от одного к другому и указывать время отставания. В задаче сказано, что «Саша обогнал Диму на 39 с». Это значит, что Дима отстал от Саши на 39 с. Саша отстал от Васи на 41 с. Андрей был впереди Васи 12 с, значит Вася отстал от Андрея на 12 с, и Андрей отстал от победителя на 13 с:

Д 39 с С П

41 с 13 с

В 12 с А

По рисунку видно, что первым финишировал Андрей, отстав от победителя на 13 с, за ним Вася – отстав от победителя на (13с + 12с)=25 с. Затем финишировал Саша с отставанием 25 с + 41 с = 66 с = 1 мин 6с. И последним был Дима, отставший от победителя на 1 мин 6 с + 39 с = 1 мин 45 с.

 
Метод 2. Метод таблиц

Основной прием, который используется при решение текстовых логических задач, заключается в построение таблиц. Таблицы не только позволяют наглядно представить условие задачи или её ответ, но в значительной степени помогают делать правильные логические выводы в ходе решения задач.

 

Задача. Три клоуна Бим, Бам и Бом вышли на арену в красной, зеленой и синей рубашках. Их туфли были тех же цветов. У Бима цвета рубашки и туфель совпадали. У Бома ни туфли, ни рубашка не были красными. Бам был в зеленых туфлях, а в рубашке другого цвета. Как были одеты клоуны?

Решение. Составим таблицу, в столбцах которой отметим возможные цвета рубашек и туфель клоунов (буквами К, З и С обозначены красный, зеленый и синий цвета). Будем заполнять таблицу, используя условия задачи. Туфли Бама зеленые, а рубашка не является зеленой. Ставим знак + в клетку 2-й строки и 5-го столбца, и знак - в клетку 2-й строки и 2-го столбца. Следовательно, у Бима и Бома туфли уже не могут быть зелеными, так же как не могут быть туфли Бама синими или красными. Отметим все это в таблице (см. табл. 1).

Далее, туфли и рубашка Бома не являются красными, отметим соответствующие ячейки таблицы знаком – . Из таблицы, заполненной на этом этапе, видим, что красные туфли могут быть только у Бима, а, следовательно, туфли Бома - синие. Правая часть таблицы заполнена, мы установили цвета обуви клоунов (табл.1). Цвет рубашки Бима совпадает с цветом его туфель и является красным. Теперь легко устанавливается владелец зеленой рубашки - Бом. Бам, в таком случае, одет в рубашку синего цвета

Таблица №1.

Мы полностью заполнили таблицу, в которой однозначно устанавливаются цвета туфель и рубашек клоунов (см. табл. 2): Бим одет в красную рубашку и красные туфли, Бам в синей рубашке и зеленых туфлях, Бом в зеленой рубашке и туфлях синего цвета.

Таблица №2.

Ответ: Бим одет в красную рубашку и красные туфли, Бам в синей рубашке и зеленых туфлях, Бом в зеленой рубашке и туфлях синего цвета.

Метод 3. Метод графов

Метод графов уже требует определенных знаний и навыков. Прежде чем перейти к решению задачи ответим на простой вопрос: «А что такое граф?».

Графом называется способ представления, при котором объекты изображаются точками, а связи между ними линиями или стрелками. Примером графа может служить схема метро. Точки называются вершинами графа, а линии – ребрами.

Решение задач этим методом заключается в построении графа по условию задачи: дело нелегкое, но интересное.

 

Задача. В кафе встретились три друга: скульптор Белов, скрипач Чернов и художник Рыжов. «Замечательно, что у одного из нас белые, у другого черные, а у третьего рыжие волосы, но ни у кого цвет волос не соответствует фамилии», — заметил черноволосый. «Ты прав», — сказал Белов. Какой цвет волос у художника?

Решение. Сначала все условия наносятся на схему. Решение же сводится к нахождению трех сплошных треугольников с вершинами в разных множествах (рис.2.).

 

Белов Чернов Рыжов

 

 

скульптор скрипач художник

 

 

 

белый черный рыжий

Художник- черноволосый

При решении мы можем получить треугольники трех видов:

а) все стороны являются сплошными отрезками (решение задачи);

б) одна сторона – сплошной отрезок, а другие – штриховые;

в) все стороны – штриховые отрезки.

 

Таким образом, нельзя получить треугольник, у которого бы две стороны были сплошными отрезками, а третья – штриховой отрезок.

 

Метод 4. Метод блок-схем

 

Задача. В школьной столовой на первое можно заказать борщ, солянку, грибной суп, на второе -мясо с макаронами, рыбу с картошкой, курицу с рисом, а на третье - чай и компот. Сколько различных обедов можно составить из указанных блюд?

Решение. Оформим решение в виде блок схемы:

Ответ: 18 вариантов.

 
 
Метод 5. Метод кругов Эйлера

Этот метод является еще одним наглядным и довольно интересным способом решения логических задач. В основе этого метода лежит построение знаменитых кругов Эйлера-Венна, задачи, в которых требуется найти некоторое пересечение множеств или их объединение, соблюдая условия задачи. Разберем пример применения данного метода.

Задача:

Из 52 школьников 23 собирают значки, 35 собирают марки, а 16 — и значки, и марки. Остальные не увлекаются коллекционированием. Сколько школьников не увлекается коллекционированием?

Решение. В условии этой задачи не так легко разобраться. Если сложить 23 и 35, то получится больше 52. Это объясняется тем, что некоторых школьников мы здесь учли дважды, а именно тех, которые собирают и значки, и марки. Чтобы облегчить рассуждения, воспользуемся кругами Эйлера

 

 

 

 

 

На рисунке большой круг обозначает 52 школьника, о которых идет речь; круг 3 изображает школьников, собирающих значки, а круг М — школьников, собирающих марки.

Большой круг разбивается кругами 3 и М на несколько областей. Пересечению кругов 3 и М соответствуют школьники, собирающие и значки, и марки (рис.). Части круга 3, не принадлежащей кругу М, соответствуют школьники, собирающие только значки, а части круга М, не принадлежащей кругу 3, — школьники, собирающие только марки. Свободная часть большого круга обозначает школьников, не увлекающихся коллекционированием.

Будем последовательно заполнять нашу схему, вписывая в каждую область соответствующее число. По условию и значки, и марки собирают 16 человек, поэтому в пересечение кругов 3 и М впишем число 16 (рис.).

 

 

 

 

 

Так как значки собирают 23 школьника, а и значки, и марки — 16 школьников, то только значки собирают 23 — 16 = 7 человек. Точно так же только марки собирают 35 — 16 = 19 человек. Числа 7 и 19 впишем в соответствующие области схемы.

Из рисунка ясно, сколько всего человек занимается коллекционированием. Чтобы узнать это, надо сложить числа 7, 9 и 16. Получим 42 человека. Значит, не увлеченных коллекционированием остается 52 — 42 = 10 школьников. Это и есть ответ задачи, его можно вписать в свободное поле большого круга.

 

Метод Эйлера является незаменимым при решении некоторых задач, а также значительно упрощает рассуждения.

Метод 6. Истинностные задачи

Задачи, в которых требуется установить истинность или ложность высказываний назовем истинностными задачами.

Задача. Три друга Коля, Олег и Петя играли во дворе, и один из них случайно разбил мячом оконное стекло. Коля сказал: «Это не я разбил стекло». Олег сказал: «Это Петя разбил стекло». Позднее выяснилось, что одно из этих утверждений верное, а другое — нет. Кто из мальчиков разбил стекло?

Решение. Предположим, что Олег сказал правду, тогда и Коля сказал правду, а это противоречит условию задачи. Следовательно, Олег сказал неправду, а Коля — правду. Из их утверждений следует, что стекло разбил Олег.

Метод 7. Задачи, решаемые с конца

Есть такой вид логических задач, которые решаются с конца. Рассмотрим пример решения таких задач.


Задача. Вася задумал число, прибавил к нему 5, потом разделил сумму на 3, умножил на 4, отнял 6, разделил на 7 и получил число 2. Какое чило задумал Вася.

Решение: 2·7=14

14+6=20

20˸4=5

5·3=15

15-5=10

Ответ: Вася задумал число 10.

bottom of page